Guideline to Applicant for Registered Device Service Testing
(STQC/BDCS/P12)

Issue: 01

Biometric Device Certification Scheme (BDCS)
STQC Directorate,
Ministry of Electronics & Information Technology (MeitY)
Government of India
Contents

0.1 Approval and Issue .. 3
0.2 Amendment Record .. 4
1. Background .. 5
2. Reference Documents .. 5
3. Target Audience .. 5
4. Purpose & Objectives of Testing and Certification ... 5
5. Scope of Work ... 6
6. Inputs Required by STQC for Provisional Certificate ... 7
7. Activities to be performed ... 7
8. Deliverables .. 8
9. Test and Certification Schedule .. 8
10. Mode of Payment .. 8
11. Terms and Conditions ... 8
12. Abbreviations ... 8

Annexure – I List of applicable UIDAI specifications / documents ... 10
Annexure – II Checklist for Provisional Certification of Registered Device (RD) Service 11
 Solution Architecture: .. 11
 Declarations (L0 & L1 both): ... 16
 Declarations for L1 Devices only: ... 17
 Functional Tests .. 18
 Security Testing: ... 20
 Scripted Security Tests: .. 20
 Management Server Certifications: .. 22
 Additional Declarations for provisional certification ... 24

Annexure – III Logistics for a Device Provider - Provisional Certification Scheme 35
0.1 Approval and Issue

This document is the property of Biometric Device Certification Scheme (BDCS) and should not be reproduced in part or full without the written consent.

Reviewed by : Management Representative

Approved by : Head, BDCS

Note:

- Management Representative (MR) is responsible for issue and distribution of this document including amendments.
- Holder of this copy is responsible for incorporation of all the amendments and currency of the document.
0.2 Amendment Record

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Date</th>
<th>Issue</th>
<th>Rev.</th>
<th>Reason of Change /Change Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>04-01-2021</td>
<td>1</td>
<td>0</td>
<td>First Issue</td>
</tr>
</tbody>
</table>
1. Background

Biometric Device Certification Scheme (BDCS) is operated by STQC Directorate, Ministry of Electronics and Information Technology (MeitY), Govt. of India. Under supervision of CB, the Testing Laboratories or Biometric Device Test laboratory (henceforth will be referred as BDTL) perform Testing of Biometric Device products against the requirements of UIDAI.

UIDAI Requires that only registered devices should be used by all Authentication Eco partners.

“Registered Devices” refer to devices that are registered with Aadhaar system for encryption key management. Aadhaar authentication server can individually identify and validate these devices and manage encryption keys on each registered device.

- **Device identification** – every physical sensor device having a unique identifier allowing device authentication, traceability, analytics, and fraud management.
- **Eliminating use of stored biometrics** – every biometric record is processed and encrypted within the secure zone eliminating transmission of unencrypted biometrics from sensor to host machine.

2. Reference Documents

- STQC/BDCS/D01 : Rules and Procedures
- STQC/BDCS/D08 : Specifications
- STQC/BDCS/F01 : Application
- ISO 27001 : Information Security Management System

Aadhaar Registered Devices – Technical specification, latest version

L1 traceability matrix document

System security engineering (NIST SP 800-160)

(Please refer Master List of Documents for latest version of the documents)

3. Target Audience

The Supplier of Biometric Authentication devices, STQC Test Laboratory and the Certification body shall follow this procedure for certification.

4. Purpose &Objectives of Testing and Certification

The key aim of testing & certification is to ensure that the Device Under Test (DUT) complies with the security requirements, relevant standards specifications including specifications released by UIDAI for Aadhaar based applications.

The objectives are to verify that:

a) To verify that the DUT meets UIDAI Aadhaar Registered Device Technical Specification achieving L0 or L1 compliance.

b) To verify that the DUT meets all environmental, safety and accuracy requirements as per
required specification.
c) Provide opportunity for Vendors to understand defects/ conformance and rectification of the same.

To grant certification and provide assurance to users of devices that the certified product meets UIDAI requirements comprehensively i.e security, accuracy (FRR) & quality for the purpose of Aadhaar based Authentication.

5. Scope of Work

The scope includes testing & certification of the following Biometric Authentication Devices that include:

a) Discrete Fingerprint Scanner
b) Discrete Iris Camera
c) Integrated Iris cameras
d) Integrated FP devices (in near future)

The Devices will be tested for the following:

- The devices which already gone through the accuracy and reliability testing by the BDTL will now be tested for compliance to the UIDAI registered device specification.
- The devices used for delivering various UID services including authentication services are capable of delivering the outputs as specified by the UIDAI and meet the UIDAI registered device requirements specified by UIDAI for Provisional Certificate.
- The device should be able to integrate with software application for Authentication using “Aadhaar Authentication API specifications (latest version)”.

The following types of tests will be conducted on the Registered Device as per specified requirements:

- Compliance statement by client for meeting Registered Devices criteria published by UIDAI
- The vendor shall ensure the UIDAI requirements have been addressed, and provide traceabilitydocumentfromUIDAIREquirementtosolutionarchitecture.Operationaldemo by the vendor.
- Execution of test cases with tools & scripts provided by UIDAI
- Security tests listed as per appendix
- Test case execution by vendors in presence of UIDAI & STQC engineers. Vendor to provide test points & tools / jig as required.

For the purpose of provisional certification, solution architecture, functional testing and self-certification are requirements. As regards the security testing, the solution expected to pass all security test, however only a subset of the tests will be executed at this time.
Note: In order to verify compliance to the device security specifications and other key requirements one or more of the followings will be used:

- Testing may be conducted in the STQC laboratory.
- External test laboratory/client’s test facility may be used to conduct the testing (where test facilities are not available with STQC).
- Compliance may be verified by demonstration(s) of testing using client’s test facilities.
- Compliance may be verified based on the test reports &/or certifications obtained by the client (subject to verification of test results on sample basis).

To carry out testing following shall be arranged:

- Test Tool / Software would be provided by UIDAI.
- Vendor to provide test points / probes tools & techniques to demonstrate of compliance along with an undertaking for meeting the requirement.
- L1 certification will include additional testing beyond that which is required for L0 certification.

6. Inputs Required by STQC for Provisional Certificate

Access to the followings information & facilities/ systems to undertake testing of Registered Devices will be required by STQC

- UID Requirements – Biometric device specifications compliance, Authentication API compliance documentation, Register Device specification compliance
- Device Documentation–RD Service Documentation, Management Client Documentation, Management Server documentations
- Authentication client for testing purpose only.
- FRR Testing Report
- BDTL Test Report
- Test environment for testing of specialized security parameters (if required)
- Internal test reports of client
- Arrangement to witness the testing at client’s facility, in case the in-house facility for the same is not available with STQC

Vendors would need to be directly providing the documentation to STQC and as per the certification needs provide additional information/Test results.

7. Activities to be performed

1. Testing Activities:
 a. Study & Understanding security of Registered Devices
 b. Test Planning & Preparation
 c. Test Execution
 d. Test Report Preparation

2. Certification Activities:
a. Analysis of test results
b. Verify compliance to evaluation criteria
c. Issue of Certificate (if evaluation criteria is met)

8. Deliverables
The following deliverables will be provided to the client:
- Security Test Report
- Certificate, subject to fulfilment of evaluation criteria

9. Test and Certification Schedule
- It will take about 6-8 weeks to complete the testing and certification after required inputs have been provided by the client to STQC.
- The charges for testing and certification (Refer STQC/BDCS/D02) will be as per the schedule of charges and Test report/Certificate will be issued only after receipt of test certification fees.
- The GST shall be extra as applicable.

10. Mode of Payment
Applicable charges are required to be paid in advance through BharatKosh (bharatkosh.gov.in) only in favour of concerned laboratory.

11. Terms and Conditions
- The payments to STQC Directorate (being Government of India organization) are exempted from TDS under section 196 of Income Tax Act.
- The vendor shall arrange for DUT and support environment at STQC test lab where testing will be undertaken.
- The client shall arrange for DUT and support environment at STQC test lab where testing will be undertaken.
- In order to complete the testing, as per schedule, client shall ensure readiness of test related documentation and timely availability of the required information.
- Test Laboratory shall ensure timely completion of test activities as per plan and submit the deliverables.

12. Abbreviations
BDCS - Biometric Device Certification Scheme
CB - Certification Body
CC - Certification Committee
DUT - Device under test
STQC - Standardization Testing Quality and Certification Directorate
UIDAI - Unique Identification Authority of India
RDS - Registered Device Service
Annexure – I List of applicable UIDAI specifications / documents

1. AADHAAR REGISTERED DEVICES TECHNICAL SPECIFICATION - VERSION 2.0 (REVISION1)
 http://uidai.gov.in/images/resource/aadhaar_registered_devices_2_0_1.pdf

2. AADHAR AUTHENTICATION API SPECIFICATION –VERSION 2.0 (REVISION 1)
 https://uidai.gov.in/images/FrontPageUpdates/aadhaar_authentication_api_2_0.pdf

3. Registered Devices Addendum Document for ErrorCodes
 https://uidai.gov.in/images/resource/aadhaar_registered_devices_2_0_1_error_codes.pdf
Annexure – II Checklist for Provisional Certification of Registered Device (RD) Service

Overview:

This document outlines the requirements and testing methodology for the provisional certification of registered devices.

Any sensor that has been approved by STQC for authentication under the previous certification may participate in the provisional certification scheme.

Sensors, that are in the process of STQC certification may continue the existing certification process. In parallel, they may apply for provisional RD service certification. Both current STQC certification for the device under the existing scheme for authentication device certification, as well as provisional RD service certification is required to allow deployments in the field.

All authentication end user devices (for e.g. POS terminals) must possess RD Service provisional certification. Under this scheme, biometric sensor vendor could apply for RD service and supply provisionally certified sensor and service to the ecosystem. End User device vendors who use an RD service certified by sensor vendor, need not apply for RD service provisional certification along with the sensor certified by STQC. In all other cases, end user device vendors need to apply for RD Service certification.

Provisional certification will be performed in the premises of the UIDAI Technology Centre at Bangalore. STQC personnel will monitor the provisional certification tests, and STQC will issue provisional certificates based on the reports generated during testing.

Device vendors will be required to submit three test samples for Registered Device Testing along with the application form and requisite charges.

Solution Architecture:

System architecture describes the architecture of the proposed registered device solution including all hardware and software components. Providing detailed solution architecture (Refer STQC/BDCS/F11- Template) is mandatory during applying for certification (Add diagrams wherever is applicable). Please be descriptive as lack of complete information may delay the certification process.

a. Describe solution architecture and explain why it is compliant with the L0/L1 registered device specifications
 ■ Show that it is not possible to insert a (stored) biometric in to the RD service and get it signed and encrypted
 ■ Show that it is not possible to extract the private key of the registered device

b. L1 Compliance:
Show how the biometrics are signed and encrypted within the trusted execution environment. (Firmware or Hardware Solution)

- Provide internationally relevant certifications for protection of the keystore in the trusted execution environment
- Provide methodology and tools to allow certifying agency to verify the L1 compliance for final certification

c. L0 Compliance:
- Describe the software keystore implementation
 - Standard keystore used (Android, CSP, Java keystore, P12, etc.)
 - Custom keystore used
 - Where is the file located?
 - File permission details
 - Keystore access rights
 - Password generation logic
 - Password strength
 - Dynamic ability in password

d. Describe the sequence diagram for the “init” function implementation. Register, key rotate, update RD service, update UIDAI public key

- The details should contain all the hop points (function names and the accessors and the file names of the binary should be used as the module name) till it reaches the sensor
Sample Sequence Diagram. - Auto generated
e. Describe the sequence diagram for “capture” function implementation
 - Submit code for RD service and capture_sign_encrypt service (this can be part of point e above).
 - Quality check, Preview, Capture Sequence etc.
 - The details should contain all the hop points (function names and the accessors and the file names of the binary should be used as the module name) till it reaches the sensor.
 - Confirm that capture_sign_encrypt service and key management is implemented as native compiled code

f. Registered Device (RD) Service Discovery
 - Discovery of the RD service
 - Handling multiple RD services on the same host
 - Allow multiple applications talk to the same RD service

g. Management Server
 - Management Server Architecture
 - Deployment and security architecture
 - HSM security in Management Server

The proposed solution architecture should include a completed traceability matrix to identify how the requirements are met by the solution. A spreadsheet detailing the traceability matrix is as under:

<table>
<thead>
<tr>
<th>S.No</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Entity applying for RD service certification</td>
</tr>
<tr>
<td>2</td>
<td>Sensor Models for RD service certification is requested (RD service may support multiple sensors)</td>
</tr>
<tr>
<td>3</td>
<td>Name of entity which applied for original sensor certification</td>
</tr>
<tr>
<td>4</td>
<td>Operating System(s) for which RD service certification is required (There will be separate installable for each OS)</td>
</tr>
<tr>
<td>5</td>
<td>Modality (Fingerprint / Iris)</td>
</tr>
<tr>
<td>6</td>
<td>Level of compliance claimed (L0/L1)</td>
</tr>
<tr>
<td>7</td>
<td>Diagram showing the solution architecture and all its components</td>
</tr>
<tr>
<td>8</td>
<td>Show that is not possible to insert a (stored) biometric into the RD service and get it signed and encrypted</td>
</tr>
<tr>
<td>9</td>
<td>Show that it is not possible to extract the private key of the registered device</td>
</tr>
<tr>
<td>10</td>
<td>Submit source code for RD service and capture, sign and encrypt service</td>
</tr>
</tbody>
</table>

For L1 Compliance

<p>| 11 | Provide Hardware Block Diagram with component list |
| 12 | Provide Datasheets for IC’s used in the design |
| 13 | Provide internationally relevant certifications for Trusted Execution Environment if available |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Describe secure boot sequence</td>
</tr>
<tr>
<td>15</td>
<td>Describe secure storage of keys (Valid for L0 compliance devices with hardware keystore)</td>
</tr>
<tr>
<td>16</td>
<td>Sequence diagram to show biometrics are signed and encrypted within the trusted execution environment.</td>
</tr>
<tr>
<td>17</td>
<td>Sequence diagram for key rotation</td>
</tr>
<tr>
<td>18</td>
<td>Sequence diagram for secure software upgrade</td>
</tr>
</tbody>
</table>
Declarations (L0 & L1 both):

The device provider will need to make the following declarations:

- It is certified that there is no debug or backdoor mechanism exist to insert a biometric into the RD service and get it signed and encrypted by the RD service.

- It is certified that there is no debug or backdoor mechanism to extract the private key from the RD service and no known bugs/exploits/vulnerabilities/configurations in the OS or any other components that the RD services uses from where an attacker could extract the private key at the time of certification, especially for L0 devices.

- It is certified that the device provider will actively watch for any known attacks or exploits or vulnerabilities in the device.
s that could help an attacker extract the keys and work towards patching the same.

- It is certified that Device provider private key is secured using an HSM and appropriate access control and monitoring mechanisms are in place within the management server environment to protect access to production machines.

- I understand that at any point of time, if my device-application is found non-conforming to any of the points declared and above, my certification may be revoked without any justification and I shall be abiding by all applicable legal consequences as per Govt. rules and regulations.

Declarations for L1 Devices only:

- It is certified device signing and encryption of the biometric takes places within the Trusted Execution Environment. (TEE as defined in the L1 compliance document)

- It is certified that the TEE has a secure boot process

- It is certified that the TEE supports secure storage of encryption keys in isolated hardware and the same is not exportable by any means outside of the TEE.

- It is certified that the TEE supports asymmetric key signing and encryption (RSA2048)

- It is certified that the TEE supports symmetric key encryption (AES 256GCM)

- It is certified that the TEE supports SHA-256 hashing

- It is certified that the processing, quality checks, preview (if available) are performed in the TEE

- It is certified that the environment has the capability to securely upgrade the software in the TEE
● It is certified that there is no external calls/commands/any other mechanism (direct/indirect) to inject a biometric and get the a singed biometric as response.

Functional Tests

Functional tests for the essential functions for authentication using registered device specification. Vendor will provide sample client based on UIDAI guidelines for these functional tests.

1. Device registration/de-registration
 a. Registration of new device through init function on startup
 ■ Logs of management servers
 b. Successful authentication
 c. De-registration of device through backend(portal)
 d. Auth failure due to unregistered device
 ■ This error may be shown error auth code
 e. Re-Register a device through init function on re-start
 f. Auth success on registered device

2. Device Key rotation
 a. Configure management server for very short validity of device certificate
 b. Auth failure due to expired device certificate
 c. Rotate certificate through init
 d. Auth success after rotation; verify that new certificate was sent

3. Upgrading the RD Service
 a. Auth success
 b. Revoke version of RD service through backend(portal)
 c. Auth failure due to wrong version of RD service
 d. Upgrade the software version of RD service through init
 ■ Init will obtain correct version through service registry xml
 e. Auth success after RD service upgrade

4. Update device provider certificate
 a. Auth success
 b. Revoke device provider certificate through backend(portal)
 c. Auth failure due to revoke device provider certificate
 d. Upload new device provider certificate through backend(portal)
 e. Re-sign device key with new device provider key through init
 f. Auth success

5. Upgrading UIDAI PublicKey
a. Update incorrect UIDAI public key in RDservice
b. AuthFailure
c. Update correct UIDAI public key through init

d. Authsuccess

6. Client Functionality
a. Device Discovery
 i. Single RD Service
 ii. Multiple RD Services
b. Capture call should provide the device status as per the device state
 iii. READY/NOT READY/BUSY as per the registered devices specc
c. Preview Validation
 iv. Sub-sampling, distortion
d. RD service functionality
 v. Optional input parameters, positive and negative testcases

7. Compliance Check
a. Population: 100 residents who are normally successful with Aadhaar authentication using the relevant modality
 i. Success Rate
 ● UID level success: 98%

8. Poor Quality Biometric Capture Check:
 a. Population: Up to 5 residents typically requiring more than one attempt to do succeed using the relevant modality
 i. Success Criteria
 ● UID level success: 60% success within 5 attempts.

Security Testing:

For the purposes of provisional certification, the following security tests will be performed

Scripted Security Tests:

1. Perform XML injection attacks on the RD services.

 Description:
 RD service accepts XML as a valid input and produces XML as an output. The objective in this test case is to inject malicious XML and see the response of the RD Service. We will concentrate on only the listed services as per the UIDAI Spec.

 Steps:
 1. Inject invalid XML.
 a. Invalid XML’s could range from failed XML syntax to valid XML with CDATA and other type of characters. This would evolve, but the OWASP XML injection
2. Inject the invalid XML against all the exposed RD service calls.
Result: System should respond back the proper XML response as expected for the respective calls (Capture, info) with an error code.

Automated Test Case:
- The RD service will be injected with various XML cheat codes for response.
- The RD service should consistently respond back with correct error codes or should never respond back based on the messages that are sent.
- All the cheat code XML's will be available in a config folder and more cheat codes can be added to the same.

1. Insert an internet proxy and try inserting keys into the response. Once completed, validate if a capture succeeds. Capture call should end with failure.

 Description:
 This test case is used to ensure that key rotation and other management calls cannot be just replayed.

 Steps:
 1. Use an internet proxy and capture the responses for various interactions that happen between the RD service and the management server.
 2. Try replaying the same response for a different device.
 3. If a value available in the request and response then replace the values appropriately and then replay the response.

 Results:
 - The Device/RD service should reject the response and continue to work with this previous known configuration or should attempt more retries.
 - The device/RD service can also move to an error state until a proper response is obtained.

2. Insert an internet proxy and replace the response from server with a response used for another device. Attempt a capture call and the result should be a failure.

3. Remove signature and try upgradation of unsigned files.

4. Make changes to any of the files to break signature and try upgradation of unsigned files.

Management Server Certifications:

5. Audit the HSM and ensure the device provider private keys are generated and stored in the FIPS Level certified HSM and the keys are not extractable.

 Description:
 This test case is an audit on the server infrastructure where the private keys are stored.
Steps:
1. Check the current FIPS level
2. Check the attributes of the device provider private keys.
Results:
1. The FIPS level should be at a minimum of 140-2 Level2
2. HSM should have the ability to work in FIPS 140-2 Level 3 to ensure physical protection of keys.
3. The attributes of the device provider private keys should be marked as non-exportable.

6. Perform VA and PT exercise on the server infrastructure

Description:
The test case is just a high level statement and the objective is to ensure the infrastructure is hardened

Steps:
1. Ensure Unwanted services are not running.
2. Only port 80 and 443 is opened for public access
3. Backbone Management ports (SSH or any other) are restricted based on IP or private key.
4. All communication should happen only on SSL.
5. Vulnerability Scan
6. Penetration testing on the management server should be performed.

Results:
The server should be hardened and no open High and Medium Vulnerabilities exist.

Additional Declarations for provisional certification

The vendor must declare that they completed the following tests in their facility and submit test reports. These tests will be performed by STQC/UIDAI during the final certification process.

7. Copy the keystore files to one more device and try using both the devices (L0 only)

8. Try interchanging keystores call capture, The RD service should fail (L0 only)

9. Extract Keystore Files, Perform rainbow table attacks to guess passwords, If the keystore is a file then validate the file permissions and ensure only RD service can access it. (L0 only)

Description:
Keystore files or any other storage location where the keystore is kept should be tested for brute force and rainbow table attacks to validate password strength and ensure proper storage of passwords.

Standard file based keystore:
- Copy the keystore file.

Attempt to break the files using rainbow table based password guess and also use all
The list most commonly used password list.

Result:

The password should not guessable and should be dynamic for every device.

Standard hidden file based keystore (windows):

- Attempt to digitally sign using the key.
● In case there is a need for a password then try to bruteforce the password.

Result:
Digital signature should not succeed.

10. Keystore Validation

Description:
Extract Keystore files from device one and place it in device two. See if the device runs and are able to get a capture through RD service.

File based keystore Steps:
- If the keystore is a file, then copy the file from the first device (let's call it asDevice A) to DeviceB.
- Run capture command against the RD service of DeviceB.

Result:
The capture should fail with an internal error as it's should not have the ability to open the key store.

Mobile system based keystore steps: (Android, IOS)
- Ensure the keystore keys are marked to be accessed only by the RD service and not by any other services running on the mobile
- The keys should never be store in the keychain.

Result:
The keys are never extractable and that proves that this test as a success

Windows based keystore steps:
- Device private keys should not be part of the roaming profile
- Folder location of the keys file has to have permissions only for RD service user account.
- All possible backup access to the keys has to be restricted.
- Copy the files from device A to device B, Ensure the locations are same.
- Once done try the capture service on device B.

Result:
The capture should fail with an internal error as it's should not have the ability to open the key store.

11. KeyRotation

Description:
Continue Test Case 11 and force a key rotation, validate if the RD service capture call provides a pid block

Steps:
- Continue the test case 11
- Force a key rotation on the device
● Now call the RD service captureapi.

Result:

Validate if the RD service return a valid PID.

12. Record & Investigatedata
Description:
Record the communication between the RD service and the Physical device.

Steps:
- Capture traffic from the time of installation of driver & RD service till keyrotation.
- Keep this information asrecord.
- Startfuzzingthecommunicationwithamixofvalidandinvaliddataforapredefined duration.
- Record all the data for futurereference.

Result:
The result of the exercise is carefully evaluated to determine if there is any leakage of information that could be used by an attacker.

13. Bluetoothwrangling
Description:
In bluetooth devices browse the profiles get information of the device and details. Perform bluesnarfing, crawler and explore bluebug to validate if one of these give more insights

Channel discovery/Exploitation Steps:
- The bluetooth devices communicate over a predefinedchannel.
- Active scanning for available channels should beperformed.
- Userbluesnarfing,crawlersandbluebugtoolstotestthebluetoothonknownissues and hiddenexposures.

Results:
This exercise will validate for any hidden exposed channels and also will validate if there is any known bluetooth related vulnerabilities that are open.

14. Force MountUSB
Description:
In USB based devices try to force mount the USB drive following the USB mass storage device protocols, it should be impossible to mount.

Steps:
- When a USB is plugged in the operating system a certain message exchanges takes place to determine if the device ismountable.
- In windows most of the work is performed by the usbd.sysfile.
- Capturetheentirecommunicationandseefwecanforcetheusbmountevenwhen the discover of USB mass storagefails.

Results:
This exercise will ensure that there is no easy access available for the USB based device

15. Memory Dump the RDService.
Description:
Force memory dump before and after capture as the RD service and try to find if there is
any secret hardcoded information.

Steps:

1. The latest version operating systems comes with ability to force a memorydump.
2. Use those abilities to force the memorydump
3. Take few dumps and analyse using the dump analysis tool specific for each operating system.

Result:
System has no hard coded values that a malware could steal.

16. Certificate Revocation

Description:
Revoke certificates and see if the RD service is able to validate the UIDAI certificate or device provider certificate revocation. The RD service should fail or attempt to fetch new key from the UIDAI or device provider.

Steps:
1. Locally revoke the certificate.
2. Attempt to capture

Results:
Capture should fail and the RD service should attempt to fetch the new certificate from UIDAI servers.

17. Screen record (This is a low profile test and applicable only if the device uses preview display)

Description:
Screen record the fingerprint/iris and see if you can pass it to the extractors.

Steps:
1. Screen capture the image
2. Pass it to the extractor
3. Validate the quality of the extraction.

Results:
The quality should be bad.

18. Integrity Check

Description:
Remove signatures from few of the device driver files. The RD service capture call should fail with error.

Steps:
1. Remove signatures from the dll’s using delcert commands
2. Attempt the capture RD service call

Result
The call should fail as the RD service self validates all its associated set of executables for integrity.

19. Attempt to decompile in case of managed programming languages and validate for storesecret

Steps
It’s a simple test case to decompile and validate.
20. Audit if the device has any removable storage or any service mode for replacement

Steps
Its an audit and self certified.

Description:
Validate the Product Security Response process, patch management, upgradation

Steps:
This is a process document to ensure that the device provider has an active way to manage vulnerabilities and fix the same and release it.

22. Code Signing Process

Description
Signature, malware scanning before signature and other process for safe and secure development release should be followed and evidence for the same to be submitted

23. Fake UIDAI public key

Description:
Insert a fake UIDAI public key and validate if the RD service is capable of identifying the wrong cert.

Steps:
1. Force the device to fetch the fake UIDAI key.
2. The UIDAI key validation is performed by looking for the CN names and validating CCA certificates.
3. Perform the capture call through RD service.

Result:
The RD Service capture call should fail.

24. DNS spoofing

Description:
Fool the domain name using hosts file where the RD service runs and validate if the RD service is capable of detecting the issue.

Steps:
1. Spoof the domain name of management server and UIDAI server (the URL where the public key is hosted) using the host file for the RD service.
2. Perform the capture call

Result:
The RD service should fail because of non-https availability.

25. Validate the housing and ensure no external interfaces are provided to connect and input biometric data. Also validate all external connectors for input and output, All USB Channels to be tested as per the usb test cases, All ethernet or wifi channels should undergo Vulnerability assessment and no information should be revealed during a VA. In case of bluetooth we should follow the bluetooth test case as listed above
26. Look for code coverage report and validate if there are public methods exposed.
27. ReverseLookup

Description:
Language based lookup for public methods or use the Solution architecture sequence diagram and validate the methods to ensure the methods does not accept external biometric and sign or provide a way to expose private key.

Steps:
1. Based on the programming language use tools to enumerate the functions.
2. Validate no methods accepts biometric for signature.

Results
Validate all the public method and ensure none of it accepts biometric data.

28. FakeRegistration

Description:
Call registration service with random serial numbers and well formatted serial numbers matching the device providers serial number generation.

Steps:
1. Understand the format.
2. Enumerate some possible serial numbers
3. Attempt registration.

Results:
Registration should fail.

29. In platforms where hooks or interceptors can be used the device should follow strong signing and should also finalize the methods so no extension or interception is used. This can be obtained as self-declaration
Annexure – III Logistics for a Device Provider - Provisional Certification Scheme

Please read Provisional Certification Checklist Document before going through this document. This document focuses on the logistics of obtaining provisional certification.

1. Device Provider should have completed functional testing in the PoC environment extended by UIDAI.
 a. The URLs, Keys and other parameters to be used in the testing (such as rdsId, rdsVer, dpId, mi etc.) would be provided by UIDAI to the provider.
 b. Testing can be done over the internet. The provider need not come to UIDAI or get into any formal agreements while testing the Services against the PoC environment.
 c. The provider can use a self-signed key pair in PoC environment. The objective is only to test the functional readiness of Registered Devices Service against Authentication 2.0, Register and De-Register APIs.
 d. Provider will proceed to the pre-production environment only after testing successfully in the PoC environment.
 e. PoC Environment will later get merged with Staging environment and sufficient sample codes and test clients will be made available by UIDAI.

2. Provider should take approvals from STQC/UIDAI to participate in the provisional certification process. During this time provider should submit necessary evidence to UIDAI HQ that the functional testing has been completed in the PoC environment. The entities will be entertained in the certification scheme only after the clearance from UIDAI. Following details are to be submitted.
 a. Submit a copy of STQC certification of the sensor if available. Providers should confirm in writing or provide an undertaking that the sensor has either undergone STQC accuracy certification successfully or is in the process of certification. In case the sensor is in the process of certification, the field deployment will happen ONLY post the accuracy certification from STQC.
 b. Provide documentations and declarations in the provisional certification checklist get validation from STQC. This includes solution architecture with traceability matrix, declaration etc.
 c. Provide one or more installable for the RD service, supported models (this should include the model being submitted), OS Name, OS Versions supported for each installables being submitted. UIDAI will assign rdsId and rdsVer accordingly.
 d. Give an undertaking that the provider has procured a Class 2/Class 3 digital signature or a Class 3 Document signer certificate for the device public key signing purposes for each of its models. The undertaking also should mention that the key is safeguarded in an HSM.
3. Once cleared by UIDAI/STQC, the provider & device details will be created in Registered Devices Ecosystem and a dpId, mi will be assigned accordingly.
4. The provisional certification functional test will be carried out in UIDAI Pre-Production environment.
 a. The provider has to reach UIDAI Technology Centre, Bangalore for demonstrating the functional readiness in Pre-production, after taking a prior appointment.
 b. URLs, licence keys and other facilities to connect to the environment will be provided by UIDAI.

5. The Service Registry will be updated accordingly and the RD services in onboarding phase will be listed in the beta registry.

6. During the testing (onboarding phase), it is not mandatory to use an HSM, instead the keys can be stored in a USB dongle as well abiding to the CA mandates for certificates. For production migration, the same keys should be exported to an HSM or a fresh key to be procured in HSM.

7. Provider should demonstrate the functional capabilities of the RD service, Management client and server through a set of semi automated, functional and security tests.

8. Once the functional testing and security tests are completed, and the report generated are duly validated by STQC, the rsId/rdsVer will be migrated to production and the production registry XML will be updated accordingly (only if the sensor has already completed STQC accuracy/environmental certification).